Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Albright, Michaeline_B N (Ed.)ABSTRACT Microorganisms often inhabit environments that are suboptimal for growth and reproduction. To survive when challenged by such conditions, individuals engage in dormancy, where they enter a metabolically inactive state. For this persistence strategy to confer an evolutionary advantage, microorganisms must be able to resuscitate and reproduce when conditions improve. Among bacteria in the phylum Actinomycetota, dormancy can be terminated by resuscitation-promoting factor (Rpf), an exoenzyme that hydrolyzes glycosidic bonds in the peptidoglycan of cell walls. We characterized Rpf fromMicrococcusKBS0714, a bacterium isolated from agricultural soil. The protein exhibited high substrate affinityin vitro, even though resuscitation was maximized in live-cell assays at micromolar concentrations. Site-directed mutations at conserved catalytic sites significantly reduced or eliminated resuscitation, as did the deletion of repeating motifs in a lectin-encoding linker region. We then tested the effects of recombinant Rpf fromMicrococcusKBS0714 on a diverse set of dormant soil bacteria. Patterns of resuscitation mapped onto strain phylogeny, which reflected core features of the cell envelope. Additionally, the direction and magnitude of the Rpf effect were associated with functional traits, in particular, aspects of the moisture niche and biofilm production, which are critical for understanding dormancy and the persistence of microbial populations in soils. These findings expand our understanding of how Rpf may affect seed bank dynamics with implications for the diversity and functioning of microorganisms in terrestrial ecosystems. IMPORTANCEDormancy is a process whereby individuals enter a reversible state of reduced metabolic activity. In fluctuating environments, dormancy protects individuals from unfavorable conditions, enhancing fitness and buffering populations against extinction. However, waking up from dormancy is a critical yet risky decision. Some bacteria resuscitate stochastically, while others rely on environmental cues or signals from neighboring cells to transition back to active growth. Resuscitation-promoting factor (Rpf) is an exoenzyme that cleaves bonds in the peptidoglycan of bacterial cell walls, facilitating dormancy termination and enabling regrowth. Although this family of proteins has been well characterized in model organisms and clinically relevant strains, our study characterizes Rpf from a soil bacterium and examines its effects on resuscitation across a diverse collection of bacteria, linking it to functional traits that may influence dormancy dynamics in both natural and managed ecosystems.more » « lessFree, publicly-accessible full text available May 20, 2026
-
Abstract Microorganisms often inhabit environments that are suboptimal for growth and reproduction. To survive when challenged by such conditions, individuals may engage in dormancy where they enter a metabolically inactive state. For this persistence strategy to confer an evolutionary advantage, microorganisms must be able to resuscitate and reproduce when conditions improve. Among bacteria in the phylum Actinomycetota, dormancy can be terminated by resuscitation-promoting factor (Rpf), an exoenzyme that hydrolyzes glycosidic bonds in the peptidoglycan of the cell wall. We characterized Rpf fromMicrococcusKBS0714, a bacterium isolated from agricultural soil. Compared to previous studies, the Rpf elicited activity at relatively high concentrations, yet demonstrated high substrate affinity. Site-directed mutations at conserved catalytic sites significantly reduced or abolished resuscitation, as did the deletion of repeating motifs in a lectin-encoding linker region. We then tested the effects of recombinant Rpf fromMicrococcusKBS0714 on a diverse set of dormant soil bacteria. Patterns of resuscitation mapped onto strain phylogeny, which reflected core features of the cell envelope. Additionally, the direction and magnitude of the Rpf effect were associated with functional traits, in particular, aspects of the moisture niche and biofilm production, which are critical for understanding persistence and resuscitation during dormancy. These findings expand our understanding of how Rpf may affect seed-bank dynamics and have implications for the diversity and functioning of soil ecosystems.more » « lessFree, publicly-accessible full text available November 10, 2025
-
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 10 0 to 10 5 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.more » « less
-
Abstract While microorganisms are recognized for driving belowground processes that influence the productivity and fitness of plant populations, the vast majority of bacteria and fungi in soil belong to a seed bank consisting of dormant individuals. However, plant performance may be affected by microbial dormancy through its effects on the activity, abundance, and diversity of soil microorganisms. To test how microbial seed banks influence plant‐soil interactions, we purified recombinant resuscitation promoting factor (Rpf), a bacterial protein that terminates dormancy. In a factorially designed experiment, we then applied the Rpf to soil containing field mustard (Brassicarapa), an agronomically important plant species. Plant biomass was ~33% lower in the Rpf treatment compared to plants grown with an unmanipulated microbial seed bank. In addition, Rpf reduced soil respiration, decreased bacterial abundance, and increased fungal abundance. These effects of Rpf on plant performance were accompanied by shifts in bacterial community composition, which may have diluted mutualists or resuscitated pathogens. Our findings suggest that changes in microbial seed banks may influence the magnitude and direction of plant‐soil feedbacks in ways that affect above‐ and belowground biodiversity and function.more » « less
An official website of the United States government
